Jumat, 20 Juni 2014


Arus listrik
Pengertian Arus Listrik Adalah banyaknya Muatan (elektron-elektron) yang bergerak disebut dengan arus. Arus yang terdapat di dalam sebuah jalur tertentu, seperti misalnya kawat logam (tembaga), mempunyai besar dan arah yang diasosiasikan dengan adanya muatan bergerak melalui sebuah titik tertentu per satuan waktu dalam arah tertentu. . Arus listrik dapat diukur dalam satuan Coulomb/detik atau Ampere.
Contoh arus listrik dalam kehidupan sehari-hari berkisar dari yang sangat lemah dalam satuan mikroAmpere (\mu A) seperti di dalam jaringan tubuh hingga arus yang sangat kuat 1-200 kiloAmpere (kA) seperti yang terjadi pada petir.

jenis-jenis arus listrik
jenis arus listrik terbagi menjadi 2 bagian antara lain adalah Arus bolak balik atau AC (Alternating Current) dan Arus searah atau DC (Direct Current),

1.Arus listrik searahTegangan yang bekerja pada rangkaian arus listrik tertutup selalu dengan arah yang sama, maka arus listrik yang mengalir arahnya juga sama. Biasa disebut dengan arus searah (simbol normalisasi : ¾ ).


Arus listrik searah adalah arus listrik yang mengalir dengan arah dan besar yang tetap/konstan.


2.Arus listrik bolak-balik
Tegangan pada suatu rangkaian arus, arahnya berubah-ubah dengan suatu irama/ritme tertentu, dengan demikian maka arah dan besarnya arus selalu berubah-ubah pula. Biasa disebut arus listrik bolak-balik (simbol normalisasi : ~ ).
 

Berarti bahwa elektron bebasnya bergerak maju dan mundur

penghantar listrik


3.1.      Penghantar, bukan penghantar, semi penghantar

Kita bedakan antara :
Penghantar listrik : elektron
Yang termasuk didalamnya yaitu logam seperti misalnya tembaga, alumunium, perak, emas, besi dan juga arang.
Atom logam membentuk sesuatu yang disebut struktur logam. Dimana setiap atom logam memberikan semua elektron valensinya (elektron-elektron pada lintasan terluar) dan juga ion-ion atom positip.

gb.kisi-kisi ruang suatu logam dgn awan elektron



Ion-ion menempati ruang dengan jarak tertentu serta sama antara satu dengan yang lain dan membentuk sesuatu yang disebut dengan kisi-kisi ruang atau pola geometris atom-atom (gambar 1.7).
Elektron-elektron bergerak seperti suatu awan atau gas diantara ion-ion yang diam dan oleh karenanya bergerak relatip ringan didalam kisi-kisi ruang.
Elektron tersebut dikenal sebagai elektron bebas. Awan elektron bermuatan negatip praktis termasuk juga didalamnya ion-ion atom yang bermuatan positip.
Sepotong tembaga dengan panjang sisinya 1 cm memiliki kira-kira 1023 (yaitu satu dengan 23 nol) elektron bebas. Melalui tekanan listrik dengan arah arus listrik tertentu, yang dalam teknik listrik dikenal sebagai tegangan listrik , elektron-elektron bebas dalam penghantar listrik digiring melalui kisi-kisi (gb. 1.8). Dengan demikian elektron-elektron penghantar listrik mentransfer muatan listrik negatipnya dengan arah tertentu. Biasa disebut sebagai arus listrik.

Dapat disimpulkan bahwa :
"Arus listrik (arus elektron) dalam suatu penghantar logam adalah merupakan gerakan elektron bebas pada bahan penghantar listrik dengan arah arus listrik tertentu. Gerakan muatan listrik tidak mengakibatkan terjadinya perubahan karakteristik bahan."


Gambar 1.8
Mekanisme penghantar logam

Tahanan Listrik (resistor)

Gerakan pembawa muatan dengan arah tertentu di bagian dalam suatu penghantar terhambat oleh terjadinya tumbukan dengan atom-atom (ion-ion atom) dari bahan penghantar tersebut. "Perlawanan" penghantar terhadap pelepasan arus inilah disebut sebagai tahanan (gambar 1.25).

Gambar 1.25     Gerakan elektron didalam penghantar logam



Satuan SI yang ditetapkan untuk tahanan listrik adalah Ohm.
Simbol formula untuk tahanan listrik adalah R
Simbol satuan untuk Ohm yaitu W (baca: Ohm). W adalah huruf Yunani Omega.
Satuan SI yang ditetapkan 1 W didefinisikan dengan aturan sbb. :


1 Ohm adalah sama dengan tahanan yang dengan perantaraan tegangan 1 V mengalir kuat arus sebesar 1 A.

Pembagian dan kelipatan satuan :
 

1 MW = 1 Megaohm  =  1000000 W  = 106 W
1 kW  = 1 Kiloohm     =        1000 W  = 103 W
1 mW = 1 Milliohm     =     1/1000 W  = 10-3 W

5.1 Tahanan Jenis (Spesifikasi Tahanan)

Percobaan :
Penghantar bermacam-macam bahan (tembaga, alumunium, besi baja) dengan panjang dan luas penampang sama berturut-turut dihubung ke sumber tegangan melalui sebuah ampermeter dan masing-masing kuat arus (simpangan jarum) diperbandingkan.


Percobaan memperlihatkan bahwa besarnya arus listrik masing-masing bahan berlawanan dengan tahanannya. Tahanan ini tergantung pada susunan bagian dalam bahan yang bersangkutan (kerapatan atom dan jumlah elektron bebas) dan disebut sebagai tahanan jenis (spesifikasi tahanan).

Gambar 1.26
Perbandingan tahanan suatu penghantar:
a)Tembaga
b)Alumunium
c)Besi baja
Simbol formula untuk tahanan jenis adalah r (baca: rho). r adalah huruf abjad Yunani.
Untuk dapat membandingkan bermacam-macam bahan, perlu bertitik tolak pada kawat dengan panjang 1 m dan luas penampang 1 mm2, dalam hal ini tahanan diukur pada suhu 20 OC.
Tahanan jenis suatu bahan penghantar menunjukkan bahwa angka yang tertera adalah sesuai dengan nilai tahanannya untuk panjang 1 m, luas penampang 1 mm2 dan pada temperatur 20 OC
 Suatu tahanan jenis adalah

 










Sebagai contoh, besarnya tahanan jenis untuk :
            tembaga     r = 0,0178  W.mm2/m
            alumunium  r = 0,0278  W.mm2/m
            perak          r = 0,016  W.mm2/m

5.2 Tahanan Listrik Suatu Penghantar 


Gambar 1.27     Rangkaian arus dengan panjang penghantar berbeda

b) Luas penampang berbeda


Gambar 1.28     Rangkaian arus dengan luas penampang penghantar berbeda



 TEGANGAN LISTRIK
Tegangan listrik U adalah merupakan perbedaan penempatan elektron-elektron antara dua buah titik.

Elektron-elektron untuk bergeraknya memerlukan suatu mesin penggerak, yang mirip dengan sebuah pompa, dimana pada salah satu sisi rangkaian listrik elektron-elektronnya “didorong kedalam”, bersamaan dengan itu pada sisi yang lain “menarik” elektron-elektron. Mesin ini selanjutnya disebut sebagai pembangkit tegangan atau sumber tegangan.
Dengan demikian pada salah satu klem dari sumber tegangan kelebihan elektron (kutub -), klem yang lainnya kekurangan elektron (kutub +). Makaantara kedua klem terdapat suatu perbedaan penempatan elektron. Keadaan seperti ini dikenal sebagai tegangan (lihat gambar 1.19).
Gambar 1.19 Sumber Tegangan 




Satuan SI yang ditetapkan untuk tegangan adalah Volt
Simbol formula untuk tegangan adalah U
Simbol satuan untuk Volt adalah V
Pembagian dan kelipatan satuan :


1 MV = 1 Megavolt   =    1000000 V  = 106 V
1 kV  = 1 Kilovolt      =          1000 V  = 103 V
1 mV = 1 Millivolt      =       1/1000 V  = 10-3 V
1 mV  = 1 Mikrovolt   = 1/1000000 V  = 10-6 V

Ketetapan satuan SI untuk  1V didefinisikan dengan bantuan daya listrik.
Pada rangkaian listrik dibedakan beberapa macam tegangan, yaitu tegangan sumber dan tegangan jatuh (lihat gambar 1.20).
 Gambar 1.20 Tegangan Sumber & Tegangan jatuh pada suatu  rangkaian.




Tegangan sumber (simbol Us) adalah tegangan yang dibangkitkan didalam sumber tegangan.
Tegangan jatuh atau secara umum tegangan (simbol U) adalah tegangan yang digunakan pada beban.
Dan dengan demikian maka tegangan sumber merupakan penyebab atas terjadinya aliran arus.
Tegangan sumber didistribusikan ke seluruh rangkaian
listrik dan digunakan pada masing-masing beban. Serta disebut juga sebagai : "Tegangan jatuh pada beban."
Dari gambar 1.20, antara dua titik yang manapun pada rangkaian arus, misal antara titik 1 dan 2 atau antara titik 2 dan 3, maka hanya merupakan sebagian tegangan sumber yang efektip. Bagian tegangan ini disebut tegangan jatuh atau tegangan saja.

4.1 POTENSIAL


Kita tempatkan elektron-elektron pada bola logam berlawanan dengan bumi, maka antara bola dan bumi terdapat perbedaan penempatan elektron-elektron, yang berarti suatu tegangan.
Tegangan antara benda padat yang bermuatan dengan bumi atau titik apa saja yang direkomendasi disebut potensial (simbol : j).
Satuan potensial adalah juga Volt. Tetapi sebagai simbol formula untuk potensial digunakan huruf Yunani  j  (baca : phi).

Bumi mempunyai potensial j = 0 V.
Gambar 1.21 Potensial



Potensial bola menjadi positip terhadap bumi, jika elektron-elektron bola diambil (misal j1 = +10 V, lihat gambar 1.21).
Potensial bola menjadi negatip terhadap bumi, jika ditambahkan elektron-elektron pada bola (misal j2 = -3 V).
Potensial selalu mempunyai tanda.
Jika suatu bola j1 = +10 V dan yang lain j2 = -3 V (gambar 1.21), maka
antara dua buah bola tersebut terdapat suatu perbedaan penempatan elektron-elektron dan dengan demikian maka besarnya tegangan dapat ditentukan dengan aturan sebagai berikut :
                 U = j1 - j2 = +10 V -(-3 V) = +10 V + 3
V = 13 V
Dalam hal ini bola bermuatan positip dibuat dengan tanda kutub plus dan bola bermuatan negatip dengan kutub minus.
 Gambar 1.22 Potensial dan Tegangan




Suatu tegangan antara dua buah titik dinyatakan sebagai perbedaan potensial titik-titik tersebut.
Tegangan = perbedaan potensial (potensial difference)


Rangkaian Listrik paralel

Rangkaian parallel tahanan
Rangkaian Paralel adalah salah satu rangkaian listrik yang disusun secara berderet (paralel). Lampu yang dipasang di rumah umumnya merupakan rangkaian paralel. Rangakain listrik paralel adalah suatu rangkaian listrik, di mana semua input komponen berasal dari sumber yang sama.

Suatu Rangkaian Listrik paralel beberapa tahanan terbentuk, jika arus yang ditimbulkannya terbagi dalam arus-arus cabang dan serentak mengalir menuju tahanan-tahanan tersebut.
            Gambar 2.14     Rangkaian parallel

Bagaimana karakteristik arus, tegangan dan tahanannya, diperlihatkan
melalui pemikiran dan percobaan berikut :
Diantara kedua titik percabangan arus yaitu titik A dan B (gambar 2.14) terletak tegangan total U. Disini semua tahanan bagian bergantung pada klem-klemnya, semua tahanan terhubung pada tegangan yang sama U.
Dengan demikian sebagai ciri utama rangkaian parallel berlaku :
Pada suatu rangkaian parallel semua tahanan terletak pada tegangan yang sama. 

Percobaan :
Pengukuran arus I, I1, I2 dan I3 pada rangkaian yang diberikan (gambar 2.15).
Gambar 2.15     Pembagian arus pada Rangkaian Listrik paralel
Hasil pengukuran:
I = 1,1 A;    I1 = 0,6 A;       I2 = 0,3 A;       I3 = 0,2 A

Suatu pemikiran yang lebih terperinci tentang nilai hasil pengukuran arus diperlihatkan oleh hubungan berikut:
Arus total adalah sama dengan jumlah arus-arus bagian (cabang).
= I+ I+ I+ . . .
melalui tiga lintasan arus, tetapi nilai seluruhnya tetap konstan.
Penjelasan untuk hal tersebut dalam hal ini, bahwasanya arus total hanya dibagi
Kita perbandingkan kuat arus dengan nilai tahanan yang ada, maka diketahui:
Pada tahanan terbesar mengalir arus terkecil dan pada tahanan terkecil mengalir arus terbesar.
 Pada tegangan yang sama maka cabang dengan tahanan besar harus mengalir arus yang kecil.

Perbandingan arus
Pengertian ini dapat dibuktikan dengan hukum Ohm. 
dalam Rangkaian Listrik paralel ini berlaku rumus:






Pada tegangan yang sama maka cabang dengan tahana
n besar harus mengalir arus yang kecil.

Perbandingan arus

diperlihatkan, bahwa perbandingan-perbandingan  tersebut berkebalikan.

Dengan demikian berlaku:
Arus bagian (cabang) satu sama lain berbanding terbalik sebagai-mana tahanan bagian (cabang) yang ada.

Jadi arus total terbagi dalam suatu perbandingan tertentu atas arus cabang, yang tergantung pada masing-masing tahanan.
Tahanan total, yang juga dikenal sebagai tahanan pengganti, dapat ditentukan dengan hukum ohm (lihat gambar 2.15).

Kita bandingkan nilai tahanan-tahanan Rangkaian Rangkaian Listrik bagian(cabang) dengan tahanan total, maka menarik perhatian, bahwa semua tahanan bagian (cabang) lebih besar dari pada tahanan total.
Tahanan total lebih kecil dari tahanan bagian/caba
ng yang terkecil.
Hal tersebut dapat diterangkan bahwa setiap merangkai tahanan secara parallel menghasilkan arus tersendiri dari nilai tahanannya, sehingga arus total untuk tahanan parallel menjadi meningkat, berarti tahanan totalnya berkurang dan menjadi lebih kecil dari tahanan bagian (cabang) yang terkecil.
Misal kita kombinasikan tahanan 1W dengan tahanan 1000 W, maka tahanan 1000 W memang hanya menghasilkan arus yang sangat kecil dibanding arus pada tahanan 1W, tetapi arus totalnya meningkat, artinya tahanan total menjadi lebih kecil dari 1W.
Setiap menghubungkan cabang parallel (tahanan Rangkaian Listrik paralel )  menghantarkan rangkaian arus yang lebih baik. Daya hantarnya meningkat. Maka daya hantar total suatu Rangkaian Listrik paralel menjadi  :
Gtot  = G+ G+ G+ . . .

Disini daya hantar kebalikan dari  
 


tahanan  diperoleh rumus

Seper tahanan total adalah sama dengan jumlah dari seper tahanan bagian (cabang).
Untuk dua tahanan parallel berlaku:



Dari sini penyebut disamakan menjadi R1 . R2



atau




Tahanan total untuk dua tahanan yang dirangkai parallel
Rangkaian parallel sangat sering digunakan didalam praktik. Praktis semua beban dirangkai parallel pada jala-jala, dalam hal ini peralatan tersebut dibuat untuk tegangan nominal tertentu dan pada gangguan tidak berfungsinya salah satu peralatan semua yang lainnya tidak terpengarug olehnya (gambar 2.16). Tahanan parallel juga dipasang, untuk mengatasi tingginya kuat arus suatu pemakai (beban), seperti misalnya pada perluasan batas ukur suatu pengukur arus (amperemeter).
 

Gambar 2.16     Rangkaian parallel dalam praktik

RANGKAIAN SERI
Rangkaian Seri adalah salah satu rangkaian listrik yang disusun secara sejajar (seri). Baterai dalam senter umumnya disusun dalam rangkaian seri. 
Penerapan hokum ohm dengan mudah diaplikasikan melihat nilai hambatan yang dapat dicari dengan menjumlahkan seluruh komponen tersebut. V=I.R ; RTotal = R1 + R2 + R3 + ….+ Rn

Gambar Skema Rangkaian Seri

Rangkaian Seri
Rangkaian Seri memiliki beberapa kelebihan yaitu lebih praktis untuk digunakan. Penggunaan tersebut juga bisa deatur secara manual atau automatik. Selanjutnya rangkaian ini juga memiliki rancangan yang lebih simple atau sederhana sehingga lebih muda untuk dibuat.

Rangkaian Resistor Seri

Resistor Seri
Rangkaian Resistor Seri
Pada rangkaian seri, resistor dihubungkan secara berderet (seri) dan untuk menghitung resistansi total dari gambar di atas adalah dengan menjumlahkan semua resistor yang ada yakni R1, R2, dan Rn.
RTotal = R1 + R2 + … Rn
RTotal = Resistansi total
R1 = Resistor ke-1
R2 = Resistor ke-2
Rn = Resistor ke-n
Contoh:
Jika terdapat R1 = 10 Ω, R1 = 20 Ω, dan R3 = 100 Ω kemudian dipasangsecara  berderet (seri) maka resistansi totalnya adalah:
RTotal = R1 + R2 + R3
RTotal = 10 Ω + 20 Ω + 100Ω
RTotal = 130 Ω

Rangkaian Resistor Paralel

Resistor Paralel
Rangkaian Resistor Paralel
Pada rangkaian paralel, semua resitor dihubungkan sejajar (paralel). Nilai resistansi total pada rangkaian paralel tidak akan melebihi resistansi dari resistor terkecil pada rangkaian tersebut.
1/RTotal = 1/R1 + 1/R2 + … 1/Rn
Contoh:
Jika terdapat tiga buah resistor dengan masing-masing nilai R1 = 4 Ω, R2 = 3 Ω, R3 = 8 Ω kemudian dipasang paralel, maka resistansi totalnya adalah sebagai berikut:
1/RTotal = 1/R1 + 1/R2 +1/R3
1/RTotal = 1/4 + 1/3 + 1/6
1/RTotal = 3/12 + 4/12 + 2/12
1/RTotal =9/12
RTotal =12/9 atau 4/3
RTotal =1.333 Ω

Rangkaian Resistor Seri-Paralel

Rangkaian resistor seri-paralel adalah gabungan dari rangkaian seri dan rangkaian paralel. Oleh karena itu untuk menghitung resistor pada rangkaian seri-paralel harus dipahami dulu bagaimana resistor-resistor tersebut dihubung. Hal ini dimaksudkan untuk mempermudah penghitungan mana yang akan didahulukan. Pada gambar di bawah yang didahulukan adalah menghitung bagian paralel yakni R1 dan Rn (R1//Rn) sedang pada gambar di bawahnya yang didahulukan adalah menghitung bagian seri yakni R1 dan R2 (R1+R2).
Resistor Seri Paralel
Rangkaian Resistor Seri Paralel
Contoh 1:
Jika R1 = 200 Ω, R2 = 50 Ω, dan Rn =50 Ω, maka cara menghitung resistor totalnya adalah sebagai berukut:
RTotal = R1 + (R2//Rn) baca: Resistansi total sama dengan R1 diserikan dengan R2 yang dipalalel dengan Rn. Artinya penghitungan paralel antara R2 dan Rn didahulukan.
RP = R1//Rn  (tanda “//” artinya paralel, jadi gunakan rumus perhitungan resistor paralel)
1/RP = 1/R1 + 1/Rn
1/RP = 1/50 + 1/50
1/RP = 2/50
RP = 50/2 = 25 Ω
Setelah hasil sementara RP diketahui, selanjutnya jumlahkan (diserikan) dengan R1.
RTotal = R1 + (R2//Rn)
RTotal = R1 + RP
RTotal = 200 + 25
RTotal = 225 Ω
Resistor Paralel Seri
Rangkaian Resistor Seri Paralel
Contoh 2:
Untuk menghitung resistansi total dari rangkaian seri-paralel di atas, lakukan penghitungan pada rangkaian seri terlebih dahulu yaitu R1 dan R2, selanjutnya diparalelkan dengan Rn. Jika pada gambar di atas R1=50 Ω, R2 = 150 Ω, dan Rn =200 Ω, maka cara menghitung resistor totalnya adalah sebagi berikut:
RTotal = (R1 + R2) // Rn) baca: R1 diserikan dengan R2 kemudian diparalel dengan Rn
RS = R1 + R2
RS = 50 + 150
RS = 200 Ω
Setelah hasil sementara Rdiketahui, selanjutnya paralelkan dengan Rn.
RTotal = (R1 + R2) // Rn
RTotal = RS // Rn
1/RTotal = 1/R1 + 1/Rn
1/RTotal = 1/200 + 1/200
1/RTotal = 2/200
RTotal = 200/2
1/RTotal = 100 Ω

MENGHIRUNG DAYA, HAMBATAN, TEGANGAN
Gambar di bawah adalah contoh rangkaian seri sederhana yang terdiri dari dua buah resistor (R1 dan R2) dan sumber tegangan (V). Untuk menghitung arus, tegangan, daya, dan resistansi pada rangkaian seri dapat menggunakan hukun Ohm yaitu V=IxR. V adalah sumber tegangan dalam satuan Volt (V), I adalah arus yang mengalir dalam satuan Ampere (A), dan R adalah Resistansi dalam satuan Ohm (Ω). Penjelasan lebih detil mengenai hukum Ohm akan dibahas di posting lain.
Rangaian Seri
Rangkaian Seri Dua Resistor
Pada gambar di atas, besarnya tegangan akan berbading lurus dengan arus, jadi semakin besar sumber tegangan (V) akan semakin besar arus yang mengalir (I) dan sebaliknya. Besarnya arus dan resistansi pada rangkaian seri adalah berbanding terbalik yakni semakin besar resistansi (R) akan semakin kecil arus yang mengalir (I). Hubungan antara daya (P), tegangan (V), dan arus (I) adalah berbanding lurus. Semakin besar tegangan (V) maka daya pun akan semakin besar, demikian pula jika arus yang mengalir semakin besar, maka daya pun akan semakin besar. P = I x V, P adalah daya dalam Watt (W), I adalah arus dalam Ampere (A), dan V adalah tegangan dalam Volt (V). Untuk lebih jelanya, sahabat dapat mempelajari cara menghitung arus, tegangan, daya, dan resistansi pada rangkaian seri berikut.
Jika pada rangkaian di atas diketahui sumber tegangan DC = 12 Volt, R1 = 8 KΩ, dan R2 = 4 KΩ, berapa arus yang mengalir, tegangan, dan daya di setiap resistor (R1 dan R2).
Solusinya sebagai berikut:
Diketahui
V = 12 Volt
R1 = 8 KΩ atau 8.000 Ω (harus dalam satuan Ohm)
R2 = 4 KΩ atau 4.000 Ω (harus dalam satuan Ohm)
RTotal = R1 + R2 (karena rangkaian seri)
RTotal = 8.000 + 4.000
RTotal = 12.000 Ω atau 12 KΩ
Menghitung Arus
V = I x R (Hukum Ohm)
I = V / R
I = 12 / 12.000
I = 0.001 Ampere atau 1 mA (mili Ampere)
Menghitung Tegangan 
Untuk menghitung daya, harus diketahui tegangan di masing-masing resistor (VR1 dan VR2). Karena ini merupakan rangkaian seri, maka arus yang mengalir pada R1 dan R2 besarnya sama (I1=I2).
V = I x R
VR1 = I1 x R1
VR1 = 0.001 x 8.000
VR1 = 8 Volt
VR2 = I2 x R2
VR2 = 0.001 x 4.000
VR2 = 4 Volt
V = VR1 + VR2
12 V = 8 V + 4 V
Menghitung Daya
P = I x V
P1 = I1 x VR1
P1 = 0.001 x 8
P1 = 0.008 Watt  atau 8 mW (mili Watt)
P2 = I2 x VR2
P2 = 0.001 x 4
P2 = 0.004 Watt atau 4 mW (mili Watt)
Kesimpulan
  1. Arus yang mengalir (I) adalah 1 mA
  2. Tegangan di R1 (VR1) adalah 8 V
  3. Tagangan di R2 (VR2) adalah 4 V
  4. Daya di R1 (P1) adalah 8 mW
  5. Daya di R2 (P2) adalah 4 mW
Rangkaian Seri
Rangkaian Seri Tiga Resistor
Maaf, resistor paling kanan R2 seharusnya R3. 
Sahabat dapat memperhatikan contoh lain untuk menghitung arus, tegangan, daya, dan resistansi pada rangkaian seri yang terdiri dari tiga buah resistor (R1, R2, dan R3) seperti pada gambar di atas. Jika diketahui tegangan sumber adalah 15 Volt, R1 = 500 Ω, R2 =5 KΩ, dan arus yang mengalir adalah 2 mA, berapa resistansi R3 dan daya di masing-masing resistor.
Solusinya sebagai berikut:
Diketahui
R1 = 500 Ω
R2 = 5.000 Ω
V = 15 Volt
I = 2 mA = 0.002 A
Menghitung Resistansi
RTotal = R1 + R2 + R3 (Rumus resistor seri)
RTotal = 500 Ω + 5.000 Ω + R3
RTotal = 5.500 Ω + R3
V = I x R (Hukum Ohm)
R = V / I
RTotal = 15 / 0.002
RTotal = 7.500 Ω = 7.5 KΩ
RTotal = 5.500 Ω + R3
R3 = RTotal - 5.500 Ω
R3 = 2.000 Ω = 2 KΩ
Menghitung Tegangan
V = I x R
I = I1 = I2 = I3 (Arus pada rangkaian seri besarnya sama)
VR1 = I1 x R1
VR1 = 0.002 x 500
VR1 = 1 Volt
VR2 = I2 x R2
VR2 = 0.002 x 5000
VR2 = 10 Volt
VR3 = I3 x R3
VR3 = 0.002 x 2.000
VR3 = 4 Volt
V = VR1 + VR2 + VR3
15 V = 1 V + 10 V + 4 V
Menghitung Daya
P = I x V
P1 = I1 x VR1
P1 = o.002 x 1
P1 = 0.002 W atau 2 mW
P2 = I2 x VR2
P2 = 0.002 x 10
P2 = 0.02 W atau 20 mW
P3 = I3 x VR3
P3 = 0.002 x 4
P3 = 0.008 W atau 8 mW
Kesimpulan
  1. Resistansi di R3 adalah 2 KΩ
  2. Tegangan di R1 (VR1) adalah 1 Volt
  3. Tegangan di R2 (VR2) adalah 10 Volt
  4. Tegangan di R3 (VR3) adalah 4 Volt
  5. Daya di R1 (P1) adalah 2 mW
  6. Daya di R2 (P2) adalah 20 mW
  7. Daya di R3 (P3) adalah 8 mW
 

sumber :
-didik siswanto,SPd,MM.
-http://www.elektronika123.com/cara-menghitung-resistor/
-http://hamadun.blogspot.com/2010/05/rangkaian-paralel-tahanan.html#more






Tidak ada komentar:

Posting Komentar